About this product
Model: Glatter-HGLC125-650
Part Number: SI-LC125-650
Howie Glatter manufactures what is generally regarded as the very best laser collimation tools available.
Howie Glatter's Laser Collimators In order to achieve the best possible resolution and contrast, the optical elements of a telescope must be put into near-perfect alignment. Collimation is the adjustment of the position and orientation of the optical elements to achieve best performance. Laser collimation is a relatively new way to accurately and precisely collimate a telescope. When practised with accurate tools and correct techniques the various methods of collimation will converge to the same result, but laser collimation has several unique advantages. The laser collimator provides its own light source, so collimation can be readily accomplished or checked after dark without additional equipment. Unlike passive collimation tools, your eye position is not constrained by a peep-hole and cross hairs, and you don’t need to scrutinize elements at different distances simultaneously.
Laser alignment and Shock Resistance
In use, the laser collimator is placed in the telescope’s eyepiece holder and clamped. A laser module inside the collimator emits an intense, thin, parallel beam of light, which exits a front aperture and projects along the central axis of the cylindrical collimator body. The beam acts as a reference line from which alignments are made.
The most important thing about a laser collimator is that the beam be aligned with the collimator's cylindrical axis. If the beam alignment with the collimator body is off, the collimation will be off and the telescope will not achieve its best performance.
For a collimator to serve as a reliable reference tool over the long term, the internal laser alignment must withstand mechanical shock. My collimators incorporate features to make them highly shock resistant. After I align the laser to the collimator body within 15 arc seconds, I test the collimator by whacking it against a block of urethane, striking at least a dozen times on three axis. I then check the alignment, and if it hasn’t changed the collimator goes into stock. The collimators usually withstand drops from eyepiece position up a ladder without losing alignment. I believe my collimators are unique in this respect.
If the laser in a collimator is misaligned, rotation of the collimator on its axis will cause the beam impact to trace a circle. However, rotating a collimator in an eyepiece holder is not the best test ofa collimator's alignment due to the small space between an eyepiece holder and the collimator. The collimator may precess like a top as it is rotated, and then even a good collimator's spot can travel in a circle. For a valid test the beam impact location should be carefully noted, then the collimator unclamped, rotated, and re-clamped, and the beam location checked to see if it has wandered.
Collimator sizes I produce the collimators in three different body sizes: a 1¼" only, a 2" only, and a combination 2"-1¼" size. The combination size is 2" at the back, and steps down to 1¼"at the front. The 2"- 1¼" or 2" collimator is recommended for accurate alignment in a 2" eyepiece holder, but the 1¼" collimator is o.k. in a 2" holder if used with an accurate adapter bushing. The adapter can be itself checked for accuracy with the collimator by rotating the adapter and reclamping it, and seeing if the laser spot wanders.
Wavelength The red collimators are offered with a choice of either 650 nanometer or 635nm wavelength. Both lasers have the same beam power output, but because the human eye's sensitivity to the shorter wavelength is greater, the 635nm. laser appears about two or three times brighter. The 635nm laser is more expensive, but it enables Barlowed or holographic collimation in higher levels of ambient light. In darkness the 650nm laser is adequate.
I also offer a 532nm green collimator, much brighter than the red ones. In most circumstances it is overly bright for night time collimation, but it is useful for Barlowed or holographic collimation daylight or room light. It is stocked in the 2"-1¼" combination size only.
The 1mm stop AttachmentThe beam produced by red lasers used in collimators is fuzzy-edged and elongated. When making collimating adjustments you will have to judge the location of the center of the spot by eye. To improve adjustment precision I supply my collimators with a detachable aperture stop accessory having a knife-edge 1mm pin hole and a white screen front. The stop is included in the basic collimator price. The stop screws into the laser aperture and restricts the beam, producing a tiny circular impact surrounded by a series of concentric rings. The edge of the pinhole diffracts some of the laser light, forming the concentric rings, which facilitate precise centering. With the stop attached to the collimator, the beam impact looks like a star diffraction pattern. The diffracted light that forms the rings is divergent, and this fact allows the stop to also be used to implement a low-contrast form of “Barlowed” collimation, explained below under the heading of Barlowed collimation.
The Holographic AttachmentsOptional holographic attachments screw into the laser aperture and have a white screen front surface. They contain an optical element that diffracts most of the laser light into a diverging symmetrical pattern around the central beam. The projected pattern is useful for centering optical elements by making it symmetrical with the edge of the optic.
Three different patterns are available:
- A 10 x 10 line square grid pattern is available offering the widest pattern. It spreads 21 degrees which allows centering of optics as fast as f/ 2.7. This pattern is recommended for general use because it can be used with the fastest telescopes likely to be encountered.
- A nine-concentric circle pattern is available that spans 10 degrees and will reach to the edge of f/ 5.7 optics. This pattern is recommended for scopes around this focal ratio or slower. Because the laser light is spread over a smaller area it is brighter than the square grid pattern, and this makes it particularly useful with Cassegrain scopes, where the pattern impact is sometimes scrutinized on the mirror surfaces. The projected pattern is seen only by light that is scattered from dust, dirt, or optical roughness, so a brighter pattern is better, especially if the mirrors are very clean.
- A cross-hair and circle “scope” pattern is available that spans 10 degrees. It has utility for non-Barlowed , conventional Newtonian primary collimation, where the primary is adjusted to return the reflected central laser beam back into the laser aperture of the collimator. The cross-hair intersection makes it easier to see when the return beam is centered on the collimator face.
SafetyThe lasers in my collimators have a maximum power of 5 milliwatts, and are quite safe if used with reasonable precaution. Direct or mirror-reflected eye exposure to the laser beam should always be avoided, so be careful when collimating to ensure that the beam doesn’t enter anyone's eye. The beam's impact on a surface can be viewed with no problem if the surface produces a diffuse reflection. The beam impact on a mirror or lens surface may be safely viewed if the reflected or transmitted beam is not directed towards your eye. A badly miscollimated Newtonian or Cassegrain may allow the beam to exit the telescope, so check first by pointing the telescope at a wall or screen to see if the beam is escaping. With unobstructed telescopes such as refractors the beam will always exit the front of the telescope, so a strip of masking tape should be run across the dew cap or lens cell as a safety beam stop.
Collimator alignment within the eyepiece holder
Inconsistent registration of the collimator in the eyepiece holder is a main cause of laser collimation difficulty. When the collimator is clamped, a small sideways displacement may occur, but that won’t cause a problem if the collimator and holder axis remain parallel. However, significant problems do occur when the eyepiece, collimator or camera adapter tip, and the two axis go out of parallelism. If the tipping is consistent and repeatable, collimation can be accomplished, but if the eyepiece holder does not provide a stable pointing direction for the collimator, consistent results cannot be expected.
Focuser stability
The collimator, with its long light beam as a "lever arm" is a very sensitive tool for detecting focuser problems. All too often the laser beam impact travels in a circle as a helical focuser is rotated, or jumps back and forth as focus direction of a rack-and-pinion focuser is reversed. Whatever focuser axis instabilities exist should be fixed or minimized, up to and including focuser replacement. However, even if the problems are not fixed, laser collimation of the telescope can be accomplished if the focuser is adjusted to a stable position and not disturbed over the course of collimation.
Customer reviews
Average Rating (2 Reviews): | |
02 February 2023 | Robert
Ordered this as listed as quite bright, and useful in daylight. It is much brighter than my curent (Baader) collimator, especially with the attachment at the front removed (this is used to give a smaller spot). I used it with the Howie Glatter tuBlub in bright daylight recently and could see the bright reflection and centre spot of the primary mirror very well, so achieved collimation in the daylight. It is very sturdily built and has a nice weight to it. It does the job I wanted it to do so i am happy
HOwie Glatter Single beam 1.25 collimator 30 October 2018 | Owen
The fit and finish of this collimator is excellent. Not only does it have the single beam but using the optional attachments you can have a holographic pattern and a Barlow pattern so one collimator does all. This is the high intensity one so you can see the beams in twilight as well to help in setting up. Although it is more expensive than other models it is worth it for the quality you get.
FAQ
Please fill in the form below to ask a question.